Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942.

نویسندگان

  • Taeko Nishiwaki
  • Yoshinori Satomi
  • Masato Nakajima
  • Cheolju Lee
  • Reiko Kiyohara
  • Hakuto Kageyama
  • Yohko Kitayama
  • Mioko Temamoto
  • Akihiro Yamaguchi
  • Atsushi Hijikata
  • Mitiko Go
  • Hideo Iwasaki
  • Toshifumi Takao
  • Takao Kondo
چکیده

In the cyanobacterium Synechococcus elongatus PCC 7942, KaiA, KaiB, and KaiC are essential proteins for the generation of a circadian rhythm. KaiC is proposed as a negative regulator of the circadian expression of all genes in the genome, and its phosphorylation is regulated positively by KaiA and negatively by KaiB and shows a circadian rhythm in vivo. To study the functions of KaiC phosphorylation in the circadian clock system, we identified two autophosphorylation sites, Ser-431 and Thr-432, by using mass spectrometry (MS). We generated Synechococcus mutants in which these residues were substituted for alanine by using site-directed mutagenesis. Phosphorylation of KaiC was reduced in the single mutants and was completely abolished in the double mutant, indicating that KaiC is also phosphorylated at these sites in vivo. These mutants lost circadian rhythm, indicating that phosphorylation at each of the two sites is essential for the control of the circadian oscillation. Although the nonphosphorylatable mutant KaiC was able to form a hexamer in vitro, it failed to form a clock protein complex with KaiA, KaiB, and SasA in the Synechococcus cells. When nonphosphorylatable KaiC was overexpressed, the kaiBC promoter activity was only transiently repressed. These results suggest that KaiC phosphorylation regulates its transcriptional repression activity by controlling its binding affinity for other clock proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system.

In the cyanobacterium Synechococcus elongatus PCC 7942, the KaiA, KaiB and KaiC proteins are essential for generation of circadian rhythms. We quantitatively analyzed the intracellular dynamics of these proteins and found a circadian rhythm in the membrane/cytosolic localization of KaiB, such that KaiB interacts with a KaiA-KaiC complex during the late subjective night. KaiB-KaiC binding is acc...

متن کامل

Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.

In the cyanobacterium Synechococcus elongatus PCC 7942, the KaiA, KaiB, and KaiC proteins are essential for the generation of circadian rhythms. Both in vivo and in vitro, phosphorylation of KaiC is regulated positively by KaiA and negatively by KaiB and shows circadian rhythmicity. The autonomous circadian cycling of KaiC phosphorylation is thought to be the basic pacemaker of the circadian cl...

متن کامل

A cyanobacterial circadian clock based on the Kai oscillator.

In the cyanobacterium Synechococcus elongatus PCC 7942, the products of three genes (kaiA, kaiB, and kaiC) have been identified as essential components of the circadian clock. Recently, we reconstituted the self-sustainable circadian oscillation of the KaiC phosphorylation state by incubating purified KaiC with KaiA, KaiB, and ATP. This in vitro oscillation persisted for at least three cycles a...

متن کامل

The molecular clockwork of a protein-based circadian oscillator.

The circadian clock of the cyanobacterium Synechococcus elongatus PCC 7942 is governed by a core oscillator consisting of the proteins KaiA, KaiB, and KaiC. Remarkably, circadian oscillations in the phosphorylation state of KaiC can be reconstituted in a test tube by mixing the three Kai proteins and adenosine triphosphate. The in vitro oscillator provides a well-defined system in which experim...

متن کامل

A novel mutation in kaiC affects resetting of the cyanobacterial circadian clock.

Light is the most important factor controlling circadian systems in response to day-night cycles. In order to better understand the regulation of circadian rhythms by light in Synechococcus elongatus PCC 7942, we screened for mutants with defective phase shifting in response to dark pulses. Using a 5-h dark-pulse protocol, we identified a mutation in kaiC that we termed pr1, for phase response ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 38  شماره 

صفحات  -

تاریخ انتشار 2004